PM7-TS Barrier Heights

(Home - PM7 Accuracy - Manual - Transition State Geometries)

 

          Reaction Ref. Barrier Height  PM7 Error in PM7 |Error in PM7|   Ref. Barrier Height  PM7-TS Error in PM7-TS |Error in PM7-TS|   Ref. Barrier Height  PM6 Error in PM6 |Error in PM6|

Ess & Houk

                           
hc1 - Cyclobutene → butadiene 31.9 33.6 1.7 1.7   31.9 32.2 0.3 0.3   31.9 39.8 7.9 7.9
hc2 - Hexatriene → cycloheadiene  29.8 27.3 -2.5 2.5   29.8 21.5 -8.3 8.3   29.8 30.1 0.3 0.3
hc3 - Dimethylene → cyclobuta - benzene  28.3 34.8 6.5 6.5   28.3 26.8 -1.5 1.5   28.3 38.2 9.9 9.9
hc4 - Pentadiene → Pentadiene 35.4 42.8 7.4 7.4   35.4 32.1 -3.3 3.3   35.4 40.4 5.0 5.0
hc5 - Cyclobutadiene → cyclobutadiene 23.6 39.2 15.6 15.6   23.6 23.8 0.2 0.2   23.6 38.4 14.8 14.8
hc6 - 1,5 Hexadiene → 1,5 hexadiene 33.5 60.6 27.1 27.1   33.5 44.5 11.0 11.0   33.5 59.4 25.9 25.9
hc7 - Ethylene + butadiene → cyclohexene 22.0 20.6 -1.4 1.4   22.0 16.8 -5.2 5.2   22.0 26.5 4.5 4.5
hc8 - Cyclobutadiene + ethylene, Diels Alder 22.6 25.2 2.6 2.6   22.6 21.4 -1.2 1.2   22.6 30.6 8.0 8.0
hc9 - Two cyclopentadiene, Diels Alder 15.2 28.7 13.5 13.5   15.2 24.2 9.0 9.0   15.2 33.5 18.3 18.3
hc10 - Cyclonona-1,4,7-triene, Ring opening 24.6 30.2 5.6 5.6   24.6 28.6 4.0 4.0   24.6 38.7 14.1 14.1
hc11 - Cycloduodeca-1,5,9-triene, Ring opening 52.5 55.9 3.4 3.4   52.5 49.2 -3.3 3.3   52.5 74.7 22.2 22.2

Ess & Houk

                           
N2O +  C2H4 → Heterocycle 27.9 26.5 -1.4 1.4   27.9 24.7 -3.2 3.2   27.9 27.2 -0.7 0.7
N2O +  C2H2 → Heterocycle 27.9 32.7 4.8 4.8   27.9 30.5 2.6 2.6   27.9 34.1 6.2 6.2
N3H +  C2H4 → Heterocycle 20.3 51.5 31.2 31.2   20.3 21.5 1.2 1.2   20.3 46.1 25.8 25.8
N3H +  C2H2 → Heterocycle 20.1 24.3 4.2 4.2   20.1 20.3 0.2 0.2   20.1 26.1 6.0 6.0
N2CH2 +  C2H4 → Heterocycle 14.6 22.8 8.2 8.2   14.6 14.9 0.3 0.3   14.6 25.9 11.3 11.3
N2CH2 +  C2H2 → Heterocycle 15.2 27.9 12.7 12.7   15.2 16.4 1.2 1.2   15.2 31.4 16.2 16.2
H−C≡N+−O- +  C2H4 → Heterocycle 13.0 21.6 8.6 8.6   13.0 12.6 -0.4 0.4   13.0 23.2 10.2 10.2
H−C≡N+−O- +  C2H2 → Heterocycle 14.1 26.9 12.8 12.8   14.1 13.8 -0.3 0.3   14.1 29.6 15.5 15.5
H−C≡N+−N-H +  C2H4 → Heterocycle 7.2 16.7 9.5 9.5   7.2 2.9 -4.3 4.3   7.2 20.2 13.0 13.0
H−C≡N+−N-H +  C2H2 → Heterocycle 8.5 21.6 13.1 13.1   8.5 4.6 -3.9 3.9   8.5 24.5 16.0 16.0
H−C≡N+−C-H2 +  C2H4 → Heterocycle 5.9 16.4 10.5 10.5   5.9 0.6 -5.3 5.3   5.9 21.9 16.0 16.0
H−C≡N+−C-H2 +  C2H2 → Heterocycle 7.4 21.2 13.8 13.8   7.4 2.8 -4.6 4.6   7.4 27.3 19.9 19.9
H2C=N+H−O- +  C2H4 → Heterocycle 13.8 18.9 5.1 5.1   13.8 19.7 5.9 5.9   13.8 17.3 3.5 3.5
H2C=N+H−O- +  C2H2 → Heterocycle 14.0 23.8 9.8 9.8   14.0 19.0 5.0 5.0   14.0 22.9 8.9 8.9
H2C=N+H−N-H +  C2H4 → Heterocycle 6.6 21.0 14.4 14.4   6.6 12.7 6.1 6.1   6.6 23.5 16.9 16.9
H2C=N+H−N-H +  C2H2 → Heterocycle 8.1 25.1 17.0 17.0   8.1 13.3 5.2 5.2   8.1 26.7 18.6 18.6
H2C=N+H−C-H2 +  C2H4 → Heterocycle 0.9 12.6 11.7 11.7   0.9 3.3 2.4 2.4   0.9 18.9 18.0 18.0
H2C=N+H−C-H2 +  C2H2 → Heterocycle 1.5 16.3 14.8 14.8   1.5 2.3 0.8 0.8   1.5 23.0 21.5 21.5
Heterocycle  → N2O +  C2H4  31.8 52.6 20.8 20.8   31.8 35.9 4.1 4.1   31.8 53.9 22.1 22.1
Heterocycle  → N2O +  C2H2  65.0 80.0 15.0 15.0   65.0 67.2 2.2 2.2   65.0 80.2 15.2 15.2
Heterocycle  → N3H +  C2H4  40.0 87.4 47.4 47.4   40.0 43.8 3.8 3.8   40.0 85.1 45.1 45.1
Heterocycle  → N3H +  C2H2  81.6 93.5 11.9 11.9   81.6 77.8 -3.8 3.8   81.6 95.5 13.9 13.9
Heterocycle  → N2CH2 +  C2H4  46.3 59.7 13.4 13.4   46.3 47.7 1.4 1.4   46.3 67.5 21.2 21.2
Heterocycle  → N2CH2 +  C2H2  64.2 76.9 12.7 12.7   64.2 65.0 0.8 0.8   64.2 83.1 18.9 18.9
Heterocycle  → H−C≡N+−O- +  C2H4  52.3 56.2 3.9 3.9   52.3 50.4 -1.9 1.9   52.3 58.4 6.1 6.1
Heterocycle  → H−C≡N+−O- +  C2H2  88.1 84.8 -3.3 3.3   88.1 85.2 -2.9 2.9   88.1 85.6 -2.5 2.5
Heterocycle  → H−C≡N+−N-H +  C2H4  64.6 64.1 -0.5 0.5   64.6 59.8 -4.8 4.8   64.6 70.5 5.9 5.9
Heterocycle  → H−C≡N+−N-H +  C2H2  108.8 100.5 -8.3 8.3   108.8 98.3 -10.5 10.5   108.8 103.8 -5.0 5.0
Heterocycle  → H2C=N+H−C-H2 +  C2H4  73.9 65.1 -8.8 8.8   73.9 73.1 -0.8 0.8   73.9 74.4 0.5 0.5
Heterocycle  → H−C≡N+−C-H2 +  C2H2  94.1 83.4 -10.7 10.7   94.1 89.9 -4.2 4.2   94.1 91.0 -3.1 3.1
Heterocycle  → H2C=N+H−O- +  C2H4 42.6 51.3 8.7 8.7   42.6 44.6 2.0 2.0   42.6 55.9 13.3 13.3
Heterocycle  → H2C=N+H−O- +  C2H2  57.9 74.3 16.4 16.4   57.9 68.0 10.1 10.1   57.9 77.2 19.3 19.3
Heterocycle  → H2C=N+H−N-H +  C2H4  49.4 62.8 13.4 13.4   49.4 54.1 4.7 4.7   49.4 72.7 23.3 23.3
Heterocycle  → H2C=N+H−N-H +  C2H2  68.9 85.2 16.3 16.3   68.9 79.7 10.8 10.8   68.9 91.0 22.1 22.1
Heterocycle  → H2C=N+H−C-H2 +  C2H4  63.6 58.9 -4.7 4.7   63.6 63.6 0.0 0.0   63.6 69.9 6.3 6.3
Heterocycle  → H2C=N+H−C-H2 +  C2H2  78.4 78.4 0.0 0.0   78.4 79.4 1.0 1.0   78.4 87.8 9.4 9.4

Zhao, et. al

                           
H + FH → HF + H 42.2 26.6 -15.5 15.5   42.2 42.5 0.3 0.3   42.2 0.1 -42.1 42.1
H + FCH3 → HF + CH3 30.4 19.6 -10.8 10.8   30.4 28.7 -1.7 1.7   30.4 10.0 -20.4 20.4
H + F2 → HF + F 2.3 8.3 6.0 6.0   2.3 6.6 4.3 4.3   2.3 2.4 0.1 0.1
CH3 + FCl → CH3F + Cl 7.4 17.5 10.0 10.0   7.4 7.1 -0.3 0.3   7.4 11.4 4.0 4.0
OH- + CH3F → HOCH3 + F- 11.0 16.1 5.1 5.1   11.0 12.6 1.7 1.7   11.0 5.4 -5.5 5.5
H + N2 → HN2 14.7 2.1 -12.6 12.6   14.7 0.0 -14.7 14.7   14.7 1.4 -13.3 13.3
H + CO → HCO 3.2 0.8 -2.4 2.4   3.2 2.6 -0.5 0.5   3.2 0.3 -2.9 2.9
H + C2H4 → CH3CH2 2.1 0.2 -1.9 1.9   2.1 0.5 -1.6 1.6   2.1 0.1 -2.0 2.0
CH3 + C2H4 → CH3CH2CH2 6.9 2.2 -4.7 4.7   6.9 1.0 -5.9 5.9   6.9 4.4 -2.4 2.4
HCN → HNC 48.2 86.1 37.9 37.9   48.2 44.6 -3.6 3.6   48.2 86.0 37.8 37.8
 HF + CH3  → H + FCH3 57.0 56.4 -0.6 0.6   57.0 57.2 0.1 0.1   57.0 43.1 -14.0 14.0
CH3F + Cl  → CH3 + FCl 60.2 45.4 -14.8 14.8   60.2 60.8 0.7 0.7   60.2 45.6 -14.5 14.5
 HOCH3 + F- → OH- + CH3F 47.2 33.4 -13.8 13.8   47.2 39.2 -8.0 8.0   47.2 24.0 -23.2 23.2
HN2 → H + N2   10.7 33.0 22.3 22.3   10.7 14.2 3.4 3.4   10.7 35.9 25.1 25.1
HCO → H + CO   22.7 36.7 14.1 14.1   22.7 25.0 2.3 2.3   22.7 42.3 19.6 19.6
CH3CH2 → H + C2H4   42.1 49.2 7.1 7.1   42.1 51.5 9.4 9.4   42.1 51.2 9.1 9.1
CH3CH2CH2 → CH3 + C2H4   33.0 32.2 -0.8 0.8   33.0 36.3 3.4 3.4   33.0 37.0 4.0 4.0
HNC → HCN   33.1 77.3 44.1 44.1   33.1 41.5 8.4 8.4   33.1 72.5 39.4 39.4

Zheng, et. al.

                           
Cl- + CH3Cl → CH3Cl + Cl- 13.4 6.3 -7.1 7.1   13.4 13.5 0.1 0.1   13.4 7.7 -5.7 5.7
F- + CH3Cl → CH3F + Cl- 3.4 5.2 1.8 1.8   3.4 6.9 3.5 3.5   3.4 2.0 -1.5 1.5
CH3F +Cl- →CH3Cl + F- 29.4 37.2 7.8 7.8   29.4 27.3 -2.1 2.1   29.4 37.4 8.0 8.0
CH3F + OH- → CH3OH + F- -2.4 2.3 4.7 4.7   -2.4 -10.2 -7.8 7.8   -2.4 -7.4 -5.0 5.0
CH3OH + F- → CH3F + OH- 17.7 26.7 9.0 9.0   17.7 24.5 6.9 6.9   17.7 16.0 -1.7 1.7
H + HCl → H2 + Cl 18.0 6.0 -12.0 12.0   18.0 18.1 0.1 0.1   18.0 2.0 -16.0 16.0
OH + CH4 → H2O + CH3 6.7 3.0 -3.7 3.7   6.7 0.8 -5.9 5.9   6.7 -1.8 -8.5 8.5
H2O + CH3 → OH + CH4 19.6 26.0 6.4 6.4   19.6 24.3 4.7 4.7   19.6 25.5 5.9 5.9

Lopez, et. al

                           
REP (2',3'-cyclic ribose ethylene phosphate anion) + methoxide anion → Product 82.0 90.2 8.2 8.2   82.0 78.6 -3.4 3.4   82.0 74.1 -7.9 7.9
EP (Ethylene phosphate anion) + methoxide anion → Product 87.2 98.5 11.3 11.3   87.2 86.8 -0.4 0.4   87.2 83.4 -3.8 3.8
Product → REP (2',3'-cyclic ribose ethylene phosphate anion) + methoxide anion  32.8 18.2 -14.6 14.6   32.8 37.1 4.3 4.3   32.8 24.7 -8.1 8.1
Product → EP (Ethylene phosphate anion) + methoxide anion  43.1 14.8 -28.3 28.3   43.1 38.0 -5.0 5.0   43.1 20.4 -22.6 22.6

Nachimuthu, et. al.

                           
H5O2+ (Ec-Eb) 5.3 -12.8 -18.1 18.1   5.3 5.5 0.2 0.2   5.3 0.0 -5.3 5.3
H5O2+ (Ec-Ea) 10.0 2.0 -8.0 8.0   10.0 5.5 -4.5 4.5   10.0 3.4 -6.6 6.6
H5O2+ (Eb-Ea) 4.7 14.8 10.1 10.1   4.7 0.0 -4.7 4.7   4.7 3.4 -1.3 1.3
CH3OHH+OH2 (Ec-Eb) 9.9 -1.7 -11.6 11.6   9.9 10.2 0.4 0.4   9.9 0.9 -9.0 9.0
CH3OHH+OH2 (Ec-Ea) 11.9 0.6 -11.4 11.4   11.9 10.2 -1.7 1.7   11.9 3.2 -8.7 8.7
CH3OHH+OH2 (Eb-Ea) 2.1 2.3 0.2 0.2   2.1 0.0 -2.1 2.1   2.1 2.3 0.3 0.3
CH3COOH...OH2 DE1 183.4 169.3 -14.2 14.2   183.4 178.5 -4.9 4.9   183.4 160.6 -22.8 22.8
CH3COOH...OH2 DE2 -10.6 -9.3 1.3 1.3   -10.6 -2.6 8.0 8.0   -10.6 -8.8 1.8 1.8

Goerigk and Grimme

                           
H + N2O → N2OH 18.1 -0.1 -18.2 18.2   18.1 0.1 -18.0 18.0   18.1 0.0 -18.2 18.2
F- + CH3F → CH3F + F- -0.3 24.7 25.0 25.0   -0.3 4.0 4.3 4.3   -0.3 11.6 11.9 11.9
F- ... CH3F → CH3F ...  F- 13.4 34.0 20.6 20.6   13.4 21.1 7.8 7.8   13.4 19.9 6.5 6.5
Cl- + CH3Cl → CH3Cl + Cl- 3.1 -4.9 -8.0 8.0   3.1 2.3 -0.8 0.8   3.1 -4.0 -7.1 7.1
Cl- ... CH3Cl → CH3Cl ... Cl- 13.6 6.3 -7.3 7.3   13.6 13.6 0.0 0.0   13.6 7.7 -5.9 5.9
CH3CH2 →  CH2CH3 41.8 49.1 7.3 7.3   41.8 50.7 9.0 9.0   41.8 51.1 9.3 9.3
H + HCl → HCl + H 18.0 5.9 -12.1 12.1   18.0 9.2 -8.8 8.8   18.0 1.8 -16.2 16.2
F + HC → HF + F 106.2 87.5 -18.7 18.7   106.2 106.0 -0.1 0.1   106.2 99.6 -6.6 6.6
F- + CH3Cl → CH3F + Cl- -12.5 -6.3 6.2 6.2   -12.5 -9.3 3.3 3.3   -12.5 -8.7 3.8 3.8
Cl- + CH3F → CH3Cl + F- 20.1 27.7 7.6 7.6   20.1 14.4 -5.7 5.7   20.1 28.4 8.3 8.3
F- ... CH3OH → CH3F ... OH- 47.2 42.3 -4.9 4.9   47.2 47.1 -0.1 0.1   47.2 40.5 -6.7 6.7
OH- ... CH3F → CH3OH ... F- 11.0 16.1 5.1 5.1   11.0 12.9 1.9 1.9   11.0 5.4 -5.6 5.6
      Average: 11.0       Average: 3.8       Average: 12.2  

All values in Kcal/mol. 

Ess & Houk:   "Activation Energies of Pericyclic Reactions:  Performance of DFT, MP2, and CBS-QB3 Methods for the Prediction of Activation Barriers and Reaction Energetics of 1,3-Dipolar Cycloadditions, and Revised Activation Enthalpies for a Standard Set of Hydrocarbon Pericyclic Reactions" D. H. Ess and K. N. Houk, J. Phys. Chem. A, 2005, 109, pp 95429553.

Zhao, et. al.: Yan Zhao, Nria Gonzlez-Garca, and Donald G. Truhlar, "Benchmark Database of Barrier Heights for Heavy Atom Transfer, Nucleophilic Substitution, Association, and Unimolecular Reactions and Its Use to Test Theoretical Methods" J. Phys. Chem. A 109, 2012-2018, (2005).

Zheng, et. al.: Zheng, J., Zhao, Y,Truhlar, D. G., "The DBH24/08 Database and Its Use to Assess Electronic Structure Model Chemistries for Chemical Reaction Barrier Heights", J. Chem. Theory Comput. 5, 808821, (2009).

Lopez, et. al.:  Xabier Lopez, Annick Dejaegere, Fabrice Leclerc, Darrin M. York, and Martin Karplus, "Nucleophilic Attack on Phosphate Diesters:  A Density Functional Study of In−Line Reactivity in Dianionic, Monoanionic, and Neutral Systems"  J. Phys. Chem. B 110, 1152511539 (2006).

Nachimuthu, et. al.: Nachimuthu S., Gao J., Truhlar D., "A benchmark test suite for proton transfer energies and its use to test electronic structure model chemistries", Chemical Physics 400, 8-12 (2012).

Goerigk and Grimme : L. Goerigk and S. Grimme in J. Chem. Theory Comput. 2010, 6, 107-126.