References

1

M. J. S. Dewar and W. Thiel. Ground States of Molecules, 38. The MNDO Method. Approximations and Parameters. J. Am. Chem. Soc., 99:4899-4907, 1977.

 2 R. C. Bingham, M. J. S. Dewar, and D. H. Lo. Ground States of Molecules. XXV. MINDO/3. An Improved Version of the MINDO Semiempirical SCF-MO Method. J. Am. Chem. Soc., 97:1285-1293, 1975.

3

M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. P. Stewart. AM1: A New General Purpose Quantum Mechanical Model. J. Am. Chem. Soc., 107:3902-3909, 1985.

4

J. J. P. Stewart. Optimization of Parameters for Semi-Empirical Methods I-Method. J. Comp. Chem., 10:209-220, 1989.

5

W. Thiel and A. Voityuk. Extension of the MNDO Formalism to d orbitals: Integral Approximations and Preliminary Numerical Results. Theor. Chim. Acta, 81:391-404, 1992.

6

W. Thiel and A. Voityuk. Extension of MNDO to d-Orbitals - Parameters and Results for the 2nd Row Elements and for the Zinc Group. J. Phys. Chem., 100:616-629, 1996.

7

J. Baker. An Algorithm for the Location of Transition States. J. Comp. Chem., 7:385, 1986.

8

R. H. Bartels. Report CNA-44. University of Texas and Center for Numerical Analysis, 1972.

9

A. Komornicki and J. W. McIver. Rapid Geometry Optimization for Semiempirical Molecular Orbital Methods. Chem. Phys. Lett, 10:303, 1971.

10

A. Komornicki and J. W. McIver. Structure of Transition States in Organic Reactions. General Theory and an Application to the Cyclobutene-Butadiene Isomerization using a Semiempirical Molecular Orbital Method. J. Am. Chem. Soc., 94:2625-2633, 1972.

11

A. Klamt. On the Calculation of UV/Vis-Spectra in Solution. J. Phys. Chem., 99:2224-2235, 1995.

12

F. J. Luque, Y. Zhang, C. Aleman, M. Bachs, J. Gao, and M. Orozco. Solvent Effects in Chloroform Solution: Parameterization of the MST/SCRF Continuum Model. J. Phys. Chem., 100:4269-4276, 1996.

13

F. J. Luque, M. Bachs, C Aleman, and M. Orozco. Extension of MST/SCRF Method to Organic Solvents: Ab initio and Semiempirical Parameterization for Neutral Solutes in CCl4. J. Comp. Chem., 17:806-820, 1996.

14

M. J. Frisch, J. S. Binkley, H. B. Schlegel, K. Raghavachari, C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohlfing, R. L. Kahn, D. J. DeFrees, R. Seeger, R. A. Whiteside, D. J. Fox, E. M. Fleuder, and J. A. Pople. Gaussian 86. Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh PA, 1984.

15

D. R. Armstrong, P. G. Perkins, and J. J. P. Stewart. Bond Indices and Valency. J. Chem. Soc., Dalton, pages 838-840, 1973.

16

M. J. S. Dewar and Y. Yamaguchi. Analytical First Derivatives of the energy in MNDO. Computers and Chemistry, 2:25-29, 1978.

17

R. F. Stewart. Small Gaussian Expansions of Slater-Type Orbitals. J. Chem. Phys., 52:431-438, 1970.

18

M. J. S. Dewar, E. F. Healy, and J. J. P. Stewart. Location of Transition States in Reaction Mechanisms. J. Chem. Soc., Faraday Trans. II, 80:227-233, 1984.

19

C. G. Broyden. The Convergence of a Class of Double-Rank Minimization Algorithms 2, The New Algorithm. J. of the Inst. for Math. and Applications, 6:222-231, 1970.

20

R. Fletcher. A New Approach to Variable-Metric Algorithms. Computer Journal, 13:317-322, 1970.

21

D. Goldfarb. A Family of Variable-Metric Algorithms Derived by Variational Means. Mathematics of Computation, 24:23-26, 1970.

22

D. F. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization. Mathematics of Computation, 24:647-656, 1970.

23

M. S. Gopinathen, P. Siddarth, and C. Ravimohan. Valency and Molecular Structure. Theor. Chim. Acta, 70:303-322, 1986.

24

M. A. Natiello, H. F. Reale, and J. A. Medrano. A Generalized Formalism of the Quantum Theory of Valence and Bonding. J. Comput. Chem., 6:108, 1985.

25

J. A. Medrano, H. F. Reale, and R. C. Bochicchio. On the Theory of Valence and Bonding: A Further Generalization. J. Mol. Struct. (Theochem), 135:117, 1986.

26

J. A. Medrano and R. C. Bochicchio. The UHF Extension of the Quantum Theory of Valence and Bonding. J. Mol. Struct. (Theochem), 59:463-470, 1989.

27

H. F. Reale and R. C. Bochicchio. Spin Populations for Molecular Systems. J. Phys. B, 24:2937-2946, 1991.

28

Josep M. Anglada and Josep M. Bofill. A Reduced-Restricted-Quasi-Newton-Raphson Method for Locating and Optimizing Energy Crossing Points Between Two Potential Energy Surfaces. J. Comp. Chem., 18:992-1003, 1997.

29

K. M. Dieter and J. J. P. Stewart. Calculation of Molecular Frequencies using Molecular Trajectories. J. Mol. Struct. (Theochem), 163:143-149, 1988.

30

A. Klamt and G. Schüümann. COSMO: A New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and its Gradient. J. Chem. Soc. Perkin Transactions 2, pages 799-805, 1993.

31

B. H. Besler, Jr. K. M. Merz, and P. A. Kollman. Atomic Charges Derived from Semiempirical Methods. J. Comp. Chem, 11:431-439, 1990.

32

D. Danovich and Y. Apeloig. Ionization Energies of Triazines and Tetrazines. Application of Green's Function Method Coupling with Semiempirical Molecular Orbital Calculations. J. Chem. Soc., Perkin Trans. 2, pages 1865-1873, 1991.

33

D. Danovich, V. K. Turchaninov, and V. G. Zakrzewski. OVGF AM1 Calculations on the Ionization Energies of Pyridine Derivatives. J. Mol. Struct. (Theochem), 209:77-87, 1990.

34

L.S. Cederbaum and W. Domcke. Adv. Chem. Phys., 36:206, 1977.

35

W. von Niessen, J. Schirmer, and L.S. Cederbaum. Computational Methods for the One-Particle Green's Function. Comput. Phys. Rep., 1:57, 1984.

36

D. Danovich, V. Zakrzewski, and E. Domnina. Ionization Energies of Azines from Green-Function Method in Semiempirical AM1 Method. J. Mol. Struct. (Theochem), 188:159-166, 1989.

37

D. Danovich, V. Zakrzewski, and E. Domnina. AM1 Outer Valence Greens-Function Ionization Energies of the Azoles. J. Mol. Struct. (Theochem), 187:297-306, 1989.

38

P. G. Perkins and J. J. P. Stewart. A New Rapid Method for Orbital Localization. J. Chem. Soc., Faraday II, 78:285-296, 1982.

39

D. R. Armstrong, R. Fortune, and P. G. Perkins. Molecular Orbital Theory for the Excited States of Transition Metal Complexes. J. Chem. Soc., Faraday II, 68:1839-1846, 1972.

40

F. J. Luque and M. Orozco. Reliability of the AM1 Wavefunction to Compute Molecular Electrostatic Potentials. Chem. Phys. Lett., 168:269-275, 1990.

41

R. S. Mulliken. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I. J. Chem. Phys, 23:1833-1841, 1955.

42

R. S. Mulliken. Criteria for the Construction of Good Self-Consistent Field Molecular Orbital Wavefunctions and the Significance of LCAO-MO Population Analysis. J. Chem. Phys, 36:3428, 1962.

43

M. J. S. Dewar and D. A. Liotard. An Efficient Procedure for Calculating the Molecular Gradient using SCF-CI Semiempirical Wavefunctions with a Limited Number of Configurations. J. Mol. Struct. (Theochem), 206:123-133, 1990.

44

W. Thiel. Fast Semiempirical Geometry Optimizations. J. Mol. Struct., 163:415-429, 1988.

45

G. P. Ford and B. Wang. New Approach to the Rapid Semiempirical Calculation of Molecular Electrostatic Potentials Based on the AM1 Wave Function: Comparison with Ab Initio HP/6-31G* Results. J. Comp. Chem., 14:1101-1111, 1993.

46

B. Wang and G. Ford. Atomic Charges Derived from a Fast and Accurate Method for Electrostatic Potential based on Modified AM1 Calculations. J. Comp. Chem., 15:200-207, 1994.

47

H. A. Kurtz, J. J. P. Stewart, and K. M. Dieter. Calculation of the Nonlinear Optical Properties of Molecules. J. Comp. Chem, 11:82-87, 1990.

48

P. Pulay. Convergence Acceleration of Iterative Sequences. The Case of SCF Iteration. Chem. Phys. Lett., 73:393-398, 1980.

49

A. V. Mitin. The Dynamic ÎLevel Shiftâ method for Improving the Convergence of the SCF Procedure. J. Comp. Chem, 9:107-110, 1988.

50

M. J. S. Dewar and G. P. Ford. Ground States of Molecules. 44 MINDO/3 Calculations of Absolute Heat Capacities and Entropies of Molecules without Internal Rotations. J. Am. Chem. Soc., 99:7822-7829, 1977.

51

G. Frenking, F. Marschner, and H. Goetz. MINDO3-Berechnungen von Phosphororganischen Verbindungen. IV. Parametrisierung und Berechnung von Verbindungen mit P-O, P-F, und P-Cl Bindungen. Phosphorus and Sulfur, 8:337-342, 1980.

52

C. C. J. Roothaan. New Developments in Molecular Orbital Theory. Rev. Mod. Phys., 23:69-89, 1951.

53

G. G. Hall. The Molecular Orbital Theory of Chemical Valency VIII: A Method for Calculating Ionization Potentials. Proc. Royal Soc. London, A205:541-542, 1951.

54

L. Oleari, L. DiSipio, and G. DeMichells. The Evaluation of the One-Centre Integrals in the Semi-Empirical Molecular Orbital Theory. Mol. Physics, 10:97-109, 1966.

55

M. J. S. Dewar and W. Thiel. A Semiempirical Model for the Two-Center Repulsion Integrals in the NDDO Formalism. Theor. Chim. Acta, 46:89-104, 1977.

56

M. J. S. Dewar and N. L. Sabelli. Proc. R. Soc. London, Ser. A, 264:431, 1961.

57

M. J. S. Dewar and N. L. Sabelli. J. Phys. Chem., 66:2310, 1962.

58

G. Klopman. J. Am. Chem. Soc., 86:4550, 1964.

59

T. Koopmans. Uber die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1:104-113, 1934.

60

K. B. Wiberg. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron, 24:1083-1096, 1968.

61

S. F. Boys. Construction of Some Molecular Orbitals to be Approximately Invarient for Changes from One Molecule to Another. Rev. Mod. Phys., 32:296-299, 1960.

62

C. Edmiston and K. Ruedenberg. Localized Atomic and Molecular Orbitals. Rev. Mod. Phys., 35:457-465, 1963.

63

W. Von Niessen. Density localization of Atomic and Molecular Orbitals. I. J. Chem. Phys, 56:4290, 1972.

64

J. S. Griffith. The Theory of Transition-Metal Ions. Cambridge University Press, 1961.

65

F. L. M. A. H. de Laat. Unrestricted Hartree-Fock Molecular Orbital Calculations on Transition-Metal Complexes. Technische Hogeschool Eindhoven, 1968.

66

J. C. Slater. Cohesion in Monovalent Metals. Phys. Rev., 35:509-529, 1930.

67

J. C. Slater. Phys. Rev., 34:1293, 1959.

68

M. Born and T. von Kármán. Vibrations in Space Gratings (Molecular Frequencies). Z. Physik, 13:297-309, 1912.

69

A. F. Block. Z. Physik, 52:555, 1928.

70

J. J. P. Stewart. MOSOL, MOPAC for Solid-State Physics. Quant. Chem. Prog. Exch., 5:62-63, 1985.

71

E. R. Cohen and B. N. Taylor. The 1986 Adjustments of the Fundamental Physical Constants. Pergamon, Elmsford, NY, 1986.

72

W. Klyne and V. Prelog. Description of Steric Relationships Across Single Bonds. Experientia, 16:521-568, 1960.

73

P. Pulay. Modern Theoretical Chemistry, volume 4. Plenum, 1977.

74

H. S. Rzepa, M. Y. Yi, M. M. Karelson, and M. C. Zerner. Geometry Optimization at the Semiempirical Self-Consistent-Reaction-Field Level using the AMPAC and MOPAC Programs. J. Chem. Soc. Perkin Trans. II, 5:635-637, 1991.

75

S. Miertus, E. Scrocco, and J. Tomasi. Electrostatic Interaction of a Solute with a Continuum. A Direct Utilization of ab initio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys., 55:117, 1981.

76

S. Miertus and J. Tomasi. Approximate Evaluations of the Electrostatic Free Energy and Internal Energy Changes in Solution Processes. Chem. Phys., 65:239, 1982.

77

F. J. Luque, M. J. Negre, and M. Orozco. An AM1-SCRF Approach to the Study of Changes in Molecular Properties Induced by Solvent. J. Phys. Chem., 97:4386-4391, 1993.

78

J. Gao, F. J. Luque, and M. Orozco. Induced Dipole Moment and Atomic Charges based on Average Electrostatic Potentials in Aqueous Solution. J. Chem. Phys., 94:2975-2982, 1993.

79

M. Negre, M. Orozco, and F. J. Luque. A New Strategy for the Representation of Environment Effects in Semi-Empirical Calculations based on Dewars Hamiltonians. Chem. Phys. Lett., 196:27-36, 1992.

80

F. J. Luque, M. Bachs, and M. Orozco. An Optimized AM1-MST Method for the SCRF Representation of Solvated Systems. J. Comp. Chem., 15:847-857, 1994.

81

M. Orozco, M. Bachs, and F. J. Luque. Development of Optimized MST/SCRF Methods for Semiempirical Calculations. The MNDO and PM3 Hamiltonians. J. Comp. Chem., 16:563-585, 1995.

82

J. L. Pascual-Ahuir, E. Silla, J. Tomasi, and R. Bonaccorsi. Electrostatic Interactions of a Solute with a Continuum. Improved Description of the Cavity and of the Surface Cavity Bound Charge Distribution. J. Comp. Chem., 8:778, 1987.

83

M. Orozco, W. L. Jorgensen, and F. J. Luque. Comparison of 6-31G* based MST/SCRF and FEP Evaluations of the Free-Energies of Hydration for Small Neutral Molecules. J. Comp. Chem., 14:1498-1503, 1993.

84

M. Bachs, F. J. Luque, and M. Orozco. Optimization of Solute Cavities and van der Waals parameters in ab initio MST-SCRF Calculations of Neutral Molecules. J. Comp. Chem., 14:446-454, 1994.

85

R. A. Pierotti. A Scaled Particle Theory of Aqueous and Nonaqueous Solutions. Chem. Rev., 76:717, 1976.

86

F. J. Luque, M. Orozco, P. K. Bhadane, and S. R. Gadre. SCRF Calculation of the Effect of Hydration on the Topology of the Molecular Electrostatic Potential. J. Phys. Chem, 97:9380-9384, 1993.

87

F. J. Luque and M. Orozco. Theoretical Study of N-methylacetamide in Vacuum and Aqueous Solution - Implications for the Peptide Bond Isomerization. J. Org. Chem., 58:6397-6405, 1993.

88

F. J. Luque and M. Orozco. Reactivity of Planar and Twisted Amides in Vacuum and Aqueous Environments: an ab initio Study. J. Chem. Soc., Perkin Trans. II, pages 683-690, 1993.

89

F. J. Luque, M. Orozco, P. K. Bhadane, and S. R. Gadre. Effect of Solvation on the Shapes, Sizes and Anisotropies of Polyatomic Anions via Molecular Electrostatic Potential Topography: an ab initio Reaction Field Approach. J. Chem. Phys, 100:6718-6726, 1994.

90

F. J. Luque, F. Illas, and M. Orozco. Comparative Study of the Molecular Electrostatic Potential Obtained from Different Wave- functions - Reliability of the Semiempirical MNDO Wavefunction. J. Comp. Chem., 11:416-430, 1990.

91

C. Alemán, F. J. Luque, and M. Orozco. Suitability of the PM3-Derived Molecular Electrostatic Potentials. J. Comp. Chem., 14:799-808, 1993.

92

G. G. Ferenczy, C. A. Reynolds, and W. G. Richards. Semiempirical AM1 Electrostatic Potentials and AM1 Electrostatic Potential Derived Charges - A Comparison with ab initio Values. J. Comp. Chem., 11:159-169, 1990.

93

C. Alhambra, F. J. Luque, and M. Orozco. Comparison of NDDO and Quasi-ab initio Approaches to Compute Semiempirical Molecular Electrostatic Potentials. J. Comp. Chem., 15:12-22, 1994.

94

M. Orozco and F. J. Luque. Optimization of the Cavity Size for ab initio MST-SCRF Calculations of Monovalent Ions. Chem. Phys., 182:237-248, 1994.

95

G. Klebe. The Use of Crystal Data Together with Other Experimental and Computational Results to Discuss Structure-Reactivity and Activity Relationships. Struct. Chem., 1:597-616, 1990.

96

J. L. Ozment and A. M. Schmiedekamp. Proton Affinities of Molecules containing Nitrogen and Oxygen: Comparing Ab Initio and Semi-Empirical methods to Experiments. Int. J. Quant. Chem., 43:783-800, 1992.

97

J. J. P. Stewart. MOPAC: A General Molecular Orbital Package. Quant. Chem. Prog. Exch., 10:86, 1990.

98

M. J. S. Dewar and W. Thiel. Ground States of Molecules, 39. MNDO Results for Molecules Containing Hydrogen, Carbon, Nitrogen, and Oxygen. J. Am. Chem. Soc., 99:4907-4917, 1977.

99

L. P. Davis, R. M. Guidry, J. R. Williams, M. J. S. Dewar, and H. S. Rzepa. MNDO Calculations for Molecules Containing Aluminum and Boron. J. Comp. Chem., 2:433-445, 1981.

100

M. J. S. Dewar and H. S. Rzepa. Ground States of Molecules. 40. MNDO Results for Molecules Containing Fluorine. J. Am. Chem. Soc., 100:58-67, 1978.

101

M. J. S. Dewar, J. Friedheim, G. Grady, E. F. Healy, and J. J. P. Stewart. Revised MNDO Parameters for Silicon. Organometallics, 5:375-379, 1986.

102

M. J. S. Dewar, M. L. McKee, and H. S. Rzepa. MNDO Parameters for Third Period Elements. J. Am. Chem. Soc., 100:3607-3607, 1978.

103

M. J. S. Dewar and C. H. Reynolds. An Improved Set of MNDO Parameters for Sulfur. J. Comp. Chem., 7:140-143, 1986.

104

M. J. S. Dewar and H. S. Rzepa. Ground States of Molecules. 53. MNDO Calculations for Molecules Containing Chlorine. J. Comp. Chem., 4:158-169, 1983.

105

M. J. S. Dewar and K. M. Merz. MNDO Calculations for Compounds Containing Zinc. Organometallics, 5:1494-1496, 1986.

106

M. J. S. Dewar, G. L. Grady, and E. F. Healy. MNDO Calculations for Compounds Containing Germanium. Organometallics, 6:186-189, 1987.

107

M. J. S. Dewar and E. F. Healy. Ground States of Molecules. 64. MNDO Calculations for Compounds Containing Bromine. J. Comp. Chem., 4:542-551, 1983.

108

M. J. S. Dewar, G. L. Grady, and J. J. P. Stewart. MNDO Calculations for Compounds Containing Tin. J. Am. Chem. Soc., 106:6771-6773, 1984.

109

M. J. S. Dewar, E. F. Healy, and J. J. P. Stewart. Ground States of Molecules. 67. MNDO Calculations for Compounds Containing Iodine. J. Comp. Chem., 5:358-362, 1984.

110

M. J. S. Dewar, G. L. Gready, K. M. Merz, and J. J. P. Stewart. MNDO Calculations for Compounds Containing Mercury. Organometallics, 4:1964-1966, 1985.

111

M. J. S. Dewar, M. K. Holloway, G. L. Grady, and J. J. P. Stewart. MNDO Calculations for Compounds Containing Lead. Organometallics, 4:1973-1980, 1985.

112

Deleted.

113

M. J. S. Dewar and E. G. Zoebisch. Extension of AM1 to the Halogens. J. Mol. Struct. (Theochem), 180:1-21, 1988.

114

M. J. S. Dewar and A. J. Holder. AM1 Parameters for Aluminum. Organometallics, 9:508-511, 1990.

115

M. J. S. Dewar and C. Jie. AM1 Calculations for Compounds Containing Silicon. Organometallics, 6:1486-1490, 1987.

116

M. J. S. Dewar and C. Jie. AM1 Parameters for Phosphorus. J. Mol. Struct. (Theochem), 187:1-13, 1989.

117

M. J. S. Dewar and Y-C Yuan. AM1 parameters for Sulfur. Inorganic Chemistry, 29:3881-3890, 1990.

118

M. J. S. Dewar and K. M. Merz. AM1 Parameters for Zinc. Organometallics, 7:522-524, 1988.

119

M. J. S. Dewar and C. Jie. AM1 Calculations for Compounds Containing Germanium. Organometallics, 8:1544-1547, 1989.

120

M. J. S. Dewar and C. Jie. AM1 Calculations for Compounds Containing Mercury. Organometallics, 8:1547-1549, 1989.

121

J. J. P. Stewart. Optimization of Parameters for Semiempirical Methods II. Applications. J. Comp. Chem., 10:221-264, 1989.

122

J. J. P. Stewart. Optimization of Parameters for Semi-Empirical Methods III- Extension of PM3 to Be, Mg, Zn, Ga, Ge, As, Se, Cd, In, Sn, Sb Te, Hg, Tl, Pb, and Bi. J. Comp. Chem., 12:320-341, 1991.

123

E. Anders, R. Koch, and P. Freunscht. Optimization and Application of Lithium Parameters for PM3. J. Comp. Chem., 14:1301-1312, 1993.

124

W. C. Davidon. Variance algorithm for minimization. Comput. J., 10:406-410, 1968.

125

R. Fletcher. Function minimization without evaluating derivatives - a review. Comput. J., 8:33-41, 1965.

126

R. Fletcher and M. J. D. Powell. A Rapidly Convergent Descent Method for Minimization. Comput. J., 6:163-168, 1963.

127

D. B. Boyd, D. W. Smith, J. J. P. Stewart, and E. Wimmer. Numerical Sensitivity of Trajectories across Conformational Energy Hypersurfaces from Geometry Optimized Molecular Orbital Calculations: AM1, MNDO, and MINDO/3. J. Comp. Chem., 9:387-398, 1988.

128

R. N. Camp and H. F. King. An Interpolation Method for Forcing SCF Convergence. J. Chem. Phys, 75:268-274, 1981.

129

J. J. P. Stewart. Application of Localized Molecular Orbitals to the Solution of Semiempirical Self-Consistent Field Equations. Int. J. Quant. Chem., 58:133-146, 1996.

130

J. J. P. Stewart. Calculation of the Geometry of a Small Protein using Semiempirical Methods. J. Mol. Struc. (Theochem), pages 195-205, 1997.

131

T. Clark. A Handbook of Computational Chemistry. Wiley, 1985.

132

A. D. Buckingham. "Molecular Quadrupole Moments", Chemical Society (Great Britain), Quarterly Reviews, London. Vol. 13,  pages 183-214, (1959).

133 Alexander A. Voityuk and Notker Rösch ; AM1/d Parameters for Molybdenum, The Journal of Physical Chemistry A; 2000; 104(17);     4089-4094.

134 Angew. Chem. Int. Ed. (Engl.) 29, 10442 (1990).

135 J. C. S. Chem. Comm. 765, (1992).

136  M. J. S. Dewar and J. A. Hashmall, C. G. Venier, J. Am. Chem. Soc., 90, 1953 (1968); M.J. S. Dewar and N. Trinajstic, J. Chem. Soc.,A, 1220 (1971).

137 G. B. Rocha, R. O. Freire, N. B. da Costa Jr., G. F. de Sá and A. M. Simas, Sparkle Model for the Calculation of Lanthanide Complexes: AM1 Parameters for Eu(III), Gd(III), and Tb(III), Inorg. Chem., 44, 3299:3310 (2004).Inorg. Chem. 2005, 44, 3299-3310

138 J. J. P. Stewart, Optimization of Parameters for Semiempirical Methods IV: Extension of MNDO, AM1, and PM3 to more Main Group Elements, J. Mol. Model. 10, 155-164 (2004).

139

Nivan B. da Costa Jr., Ricardo O. Freire,, Gerd B. Rocha,, Alfredo M. Simas, Sparkle model for the AM1 calculation of dysprosium (III) complexes, Inorg. Chem. Comm. 8, 831:835 (2005).

140 Nivan B. da Costa Jr.,, Ricardo O. Freire, Gerd B. Rocha, Alfredo M. Simas, Sparkle/AM1 modeling of holmium (III) complexes, Polyhedron (in press).

141 Cristiano C. Bastos, Ricardo O. Freire, Gerd B. Rocha, Alfredo M. Simas, Sparkle model for AM1 calculation of neodymium(III) coordination compounds, Journal of Photochemistry and Photobiology (in press)

142 Ricardo O. Freire,, Nivan B. da Costa Jr., Gerd B. Rocha, Alfredo M. Simas, Modeling lanthanide coordination compounds: Sparkle/AM1 parameters for praseodymium (III), Journal of Organometallic Chemistry, 690, 4099–4102 (2005)

143 Ricardo O. Freire, Gerd B. Rocha, Alfredo M. Simas, Modeling rare earth complexes: Sparkle/AM1 parameters for thulium (III), Chem. Phys. Lett. 411,  61–65 (2005).

144 Ricardo O. Freire,, Nivan B. da Costa Jr., Gerd B. Rocha, Alfredo M. Simas, Modeling Lanthanide Complexes: Sparkle/AM1 Parameters for Ytterbium (III)

145 Rocha, G.B., D.Sc. Thesis, Departamento de Química Fundamental da Universidade Federal de Pernambuco, Brazil (2002). Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50.590-470, Recife, PE, Brazil,  "Development and parametrization of semiempirical models for the calculation of organic molecules and complexes of lanthanide and actinide ions."

146 Rocha, G.B., R.O. Freire, A.M. Simas, and J.J.P. Stewart., RM1: A Reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comp. Chem., 27(10): 1101-1111 (2006).

147 MOPAC2009, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2008).

148  Stewart J. J. P., Optimization of Parameters for Semiempirical Methods V: Modification of NDDO Approximations and Application to 70 Elements  J. Mol. Modeling 13, 1173-1213 (2007).

149  R.O.Freire and A.M.Simas, to be submitted

150  M. J. S. Dewar and H. S. Rzepa, "Ground States of Molecules. 39. MNDO Results for Molecules Containing Beryllium" J. Am. Chem. Soc  100, 777-784 (1978).

151 MOPAC2012, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2012).

152  Stewart J. J. P., Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters  J. Mol. Modeling 19, 1-32 (2013).

153 MOPAC2016, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, HTTP://OpenMOPAC.net (2016).