Diagonalization of the Fock matrix

The Fock matrix is then diagonalized to yield the following set of eigenvalues, or one-electron energies, and eigenvectors, or molecular orbitals:

 

Energy Level Molecular Orbital Coefficients
  1 2 3 4 5 6
6 -0.4857 0.4082 -0.4082 0.4082 -0.4082 0.4082 -0.4082
5 -1.8388 0.5774 -0.2887 -0.2887 0.5774 -0.2887 -0.2887
4 -1.8388 0.0000 0.5000 -0.5000 0.0000 0.5000 -0.5000
3 -6.9317 0.5774 0.2887 -0.2887 -0.5774 -0.2887 0.2887
2 -6.9317 0.0000 0.5000 0.5000 0.0000 -0.5000 -0.5000
1 -14.8670 0.4082 0.4082 0.4082 0.4082 0.4082 0.4082
 

These form a normalized, orthogonal set. Under the NDDO approximation, overlaps between different atomic orbitals are ignored, i.e., $<\varphi_i\vert\varphi_j>=\delta(i,j)$, so instead of

\begin{displaymath}<\psi_i\vert\psi_j> = \sum_{\lambda}\sum_{\sigma}c_{\lambda i}c_{\sigma j}<\varphi_{\lambda}\vert\varphi_{\sigma}>
\end{displaymath}

we have

\begin{displaymath}<\psi_i\vert\psi_j> = \sum_{\lambda}c_{\lambda i}c_{\lambda j} = \delta(i,j).
\end{displaymath}