Description of a simple vibrational calculation output file

(move the cursor over the file to see what the parts are)

 
 *******************************************************************************
 ** Site#:   10            For non-commercial use only         Version 7.101W **
 *******************************************************************************
 ** Cite this work as: MOPAC2007, James J. P. Stewart, Stewart Computational  **
 ** Chemistry, Version 7.101W web: HTTP://OpenMOPAC.net   Days remaining: 363 **
 *******************************************************************************
 **                                                                           **
 **                                MOPAC2007                                  **
 **                                                                           **
 *******************************************************************************

                            PM6 CALCULATION RESULTS


 *******************************************************************************
 *  CALCULATION DONE:                                Wed Apr 11 11:13:27 2007  *
 *  SYMMETRY - SYMMETRY CONDITIONS TO BE IMPOSED
 *  T=       - A TIME OF 172800.0 SECONDS REQUESTED
 *  DUMP=N   - RESTART FILE WRITTEN EVERY  7200.000 SECONDS
 *******************************************************************************



     PARAMETER DEPENDENCE DATA

        REFERENCE ATOM      FUNCTION NO.    DEPENDENT ATOM(S)
            3                  1               4
            3                  2               4

             DESCRIPTIONS OF THE FUNCTIONS USED

   1      BOND LENGTH    IS SET EQUAL TO THE REFERENCE BOND LENGTH   
   2      BOND ANGLE     IS SET EQUAL TO THE REFERENCE BOND ANGLE    
 SYMMETRY
 Formaldehyde

  ATOM    CHEMICAL     BOND LENGTH    BOND ANGLE    TWIST ANGLE 
 NUMBER    SYMBOL      (ANGSTROMS)    (DEGREES)     (DEGREES) 
   (I)                   NA:I          NB:NA:I       NC:NB:NA:I       NA    NB    NC 
     1       O          0.0000000       0.000000       0.000000   
     2       C          1.2108153  *    0.000000       0.000000        1     0     0
     3       H          1.0974996  *  122.023501  *    0.000000        2     1     0
     4       H          1.0974996     122.023501     180.000000        2     1     3
 


          CARTESIAN COORDINATES 

    NO.       ATOM         X         Y         Z

     1         O        0.0000    0.0000    0.0000
     2         C        1.2108    0.0000    0.0000
     3         H        1.7928    0.9305    0.0000
     4         H        1.7928   -0.9305    0.0000

  H (PM6): J. J. P. Stewart  J. Mol. Mod. (to be submitted)!
  C (PM6): J. J. P. Stewart  J. Mol. Mod. (to be submitted)!
  O (PM6): J. J. P. Stewart  J. Mol. Mod. (to be submitted)!

           Empirical Formula: C H2 O 



      MOLECULAR POINT GROUP   :   C2v 


      RHF CALCULATION, NO. OF DOUBLY OCCUPIED LEVELS =    6


 -------------------------------------------------------------------------------
 SYMMETRY
 Formaldehyde



     GRADIENTS WERE INITIALLY ACCEPTABLY SMALL                
     SCF FIELD WAS ACHIEVED                                   


                               PM6     CALCULATION
                                                       MOPAC2007 (Version: 7.101W)
                                                       Wed Apr 11 11:13:27 2007
                                                       No. of days left = 363




          FINAL HEAT OF FORMATION =        -20.69775 KCAL =     -86.59937 KJ


          TOTAL ENERGY            =       -440.23219 EV
          ELECTRONIC ENERGY       =       -825.76440 EV  POINT GROUP:     C2v 
          CORE-CORE REPULSION     =        385.53221 EV
          COSMO AREA              =         60.76 SQUARE ANGSTROMS
          COSMO VOLUME            =         42.60 CUBIC ANGSTROMS

          IONIZATION POTENTIAL    =         10.20363
          NO. OF FILLED LEVELS    =          6
          MOLECULAR WEIGHT        =         30.026

          MOLECULAR DIMENSIONS (Angstroms)

            Atom       Atom       Distance
            H     3    O     1     2.01987
            H     4    O     1     1.65176
            O     1    C     2     0.00000


          SCF CALCULATIONS        =          1
          COMPUTATION TIME        =          0.000 SECONDS




  ATOM    CHEMICAL     BOND LENGTH    BOND ANGLE    TWIST ANGLE 
 NUMBER    SYMBOL      (ANGSTROMS)    (DEGREES)     (DEGREES) 
   (I)                   NA:I          NB:NA:I       NC:NB:NA:I       NA    NB    NC 
     1       O          0.0000000       0.000000       0.000000   
     2       C          1.2108153  *    0.000000       0.000000        1     0     0
     3       H          1.0974996  *  122.023501  *    0.000000        2     1     0
     4       H          1.0974996     122.023501     180.000000        2     1     3

           Empirical Formula: C H2 O 



      MOLECULAR POINT GROUP   :   C2v 


                  EIGENVALUES

 -32.00372 -23.55732 -17.17527 -15.14025 -14.75913 -10.20363   0.03208   4.08556
   4.45994   4.74270


              NET ATOMIC CHARGES AND DIPOLE CONTRIBUTIONS

  ATOM NO.   TYPE          CHARGE      No. of ELECS.   s-Pop       p-Pop       
    1          O          -0.422510        6.4225     1.85390     4.56861
    2          C           0.236385        3.7636     1.14506     2.61855
    3          H           0.093063        0.9069     0.90694
    4          H           0.093063        0.9069     0.90694
 DIPOLE           X         Y         Z       TOTAL
 POINT-CHG.     2.978     0.000     0.000     2.978
 HYBRID        -0.160     0.000     0.000     0.160
 SUM            2.818     0.000     0.000     2.818


          CARTESIAN COORDINATES 

    NO.       ATOM               X         Y         Z

     1         O                  0.0000    0.0000    0.0000
     2         C                  1.2108    0.0000    0.0000
     3         H                  1.7928    0.9305    0.0000
     4         H                  1.7928   -0.9305    0.0000


          ATOMIC ORBITAL ELECTRON POPULATIONS

   1.85390   1.29031   1.93516   1.34314   1.14506   0.89773   1.06397   0.65686
   0.90694   0.90694



 TOTAL CPU TIME:             0.02 SECONDS

 == MOPAC DONE ==
                           START OF FORCE CALCULATION OUTPUT
 *******************************************************************************
 ** Site#:   10            For non-commercial use only         Version 7.101W **
 *******************************************************************************
 ** Cite this work as: MOPAC2007, James J. P. Stewart, Stewart Computational  **
 ** Chemistry, Version 7.101W web: HTTP://OpenMOPAC.net   Days remaining: 363 **
 *******************************************************************************
 **                                                                           **
 **                                MOPAC2007                                  **
 **                                                                           **
 *******************************************************************************

                            PM6 CALCULATION RESULTS


 *******************************************************************************
 *  CALCULATION DONE:                                Wed Apr 11 11:13:27 2007  *
 *  OLDGEO   - PREVIOUS GEOMETRY TO BE USED
 *  FORCE    - FORCE CALCULATION SPECIFIED
 *  T=       - A TIME OF 172800.0 SECONDS REQUESTED
 *  DUMP=N   - RESTART FILE WRITTEN EVERY  7200.000 SECONDS
 *******************************************************************************
oldgeo force
The starting geometry for the FORCE calculation is the optimized geometry from the previous calculation. The use of a double calculation - first a geometry optimization, then a FORCE calculation using the optimized geometry - is the easiest way to calculate the vibrations.
Keyword FORCE instructs MOPAC to calculate the vibrational freqencies.
ATOM CHEMICAL BOND LENGTH BOND ANGLE TWIST ANGLE NUMBER SYMBOL (ANGSTROMS) (DEGREES) (DEGREES) (I) NA:I NB:NA:I NC:NB:NA:I NA NB NC 1 O 0.0000000 0.000000 0.000000 2 C 1.2108153 * 0.000000 0.000000 1 0 0 3 H 1.0974996 * 122.023501 * 0.000000 2 1 0 4 H 1.0974996 122.023501 180.000000 2 1 3 CARTESIAN COORDINATES NO. ATOM X Y Z 1 O 0.0000 0.0000 0.0000 2 C 1.2108 0.0000 0.0000 3 H 1.7928 0.9305 0.0000 4 H 1.7928 -0.9305 0.0000 H (PM6): J. J. P. Stewart J. Mol. Mod. (to be submitted)! C (PM6): J. J. P. Stewart J. Mol. Mod. (to be submitted)! O (PM6): J. J. P. Stewart J. Mol. Mod. (to be submitted)! Empirical Formula: C H2 O MOLECULAR POINT GROUP : C2v RHF CALCULATION, NO. OF DOUBLY OCCUPIED LEVELS = 6 HEAT OF FORMATION = -20.697747 KCALS/MOLE
Before the normal modes are calculated, a check is done to ensure that the structure is at a stationary point, this can be either a ground state or a transition state geometry
The gradient norm is acceptably low, so the calculation can continue. If it was high, then the calculation would be stopped and a warning given. To over-ride this check, use keyword "LET"
The rotational constants depend on the geometry only.
The rotational constants can be re-written as the Principal Moments of Inertia.
To make the normal modes easier to see, the molecule is orientated along its Principal Moments of Inertia. The smallest is "X", then "Y" then"Z". If you do not want reorientation done, add keyword "NOREOR".
INTERNAL COORDINATE DERIVATIVES NUMBER ATOM BOND ANGLE DIHEDRAL 1 O 2 C -0.044282 3 H 0.000000 0.000000 4 H -0.001510 0.000000 0.000000 GRADIENT NORM = 0.12762 MOLECULAR WEIGHT = 30.03 ROTATIONAL CONSTANTS IN CM(-1) A = 9.658776 B = 1.286026 C = 1.134917 PRINCIPAL MOMENTS OF INERTIA IN UNITS OF 10**(-40)*GRAM-CM**2 A = 2.898170 B = 21.766874 C = 24.665044 ORIENTATION OF MOLECULE IN FORCE CALCULATION NO. ATOM X Y Z 1 O -0.6047 0.0000 0.0000 2 C 0.6061 0.0000 0.0000 3 H 1.1881 0.9305 0.0000 4 H 1.1881 -0.9305 0.0000 FIRST DERIVATIVES WILL BE USED IN THE CALCULATION OF SECOND DERIVATIVES FOR POINT-GROUP C2v THERE ARE 4 UNIQUE SYMMETRY FUNCTIONS. STEP: 1 TIME = 0.00 SECS, INTEGRAL = 0.00 TIME LEFT: 172800.00 STEP: 2 TIME = 0.00 SECS, INTEGRAL = 0.00 TIME LEFT: 172800.00 STEP: 3 TIME = 0.00 SECS, INTEGRAL = 0.00 TIME LEFT: 172800.00 STEP: 4 TIME = 0.02 SECS, INTEGRAL = 0.02 TIME LEFT: 172799.98 STEP: 5 TIME = 0.00 SECS, INTEGRAL = 0.02 TIME LEFT: 172799.98 STEP: 6 TIME = 0.00 SECS, INTEGRAL = 0.02 TIME LEFT: 172799.98 STEP: 7 TIME = 0.00 SECS, INTEGRAL = 0.02 TIME LEFT: 172799.98 STEP: 8 TIME = 0.00 SECS, INTEGRAL = 0.02 TIME LEFT: 172799.98 STEP: 9 TIME = 0.00 SECS, INTEGRAL = 0.02 TIME LEFT: 172799.98 STEP: 10 INTEGRAL = 0.02 TIME LEFT: 172799.98 STEP: 11 INTEGRAL = 0.02 TIME LEFT: 172799.98 STEP: 12 INTEGRAL = 0.02 TIME LEFT: 172799.98
When present, symmetry is used to speed up the construction of the Hessian or force matrix. First, the point-group is identified, then the symmetry operations of the group are used to accelerate the construction of the Hessian. If you do NOT want symmetry to be used, add keyword "NOSYM"
For all systems, the Hessian is of size 3N by 3N, where N is the number of atoms. Constructing the Hessian is a slow operation, so each of the 3N steps is printed as it is done. When symmetry is used to speed up the calculation, the text "TIME = n.nn SECS," will not be printed
The vector sum of the force constants is printed. If the full force matrix is needed, add keyword "DEBUGFORCE"
The zero point energy is calculated from N*h*c/(2x10^(10)*4.184)*sum_i (nu_i), where nu_i are the vibrational frequencies, that is, it is the sum of (1/2)h*mu. mu = c*nu
The (3N-6) non-trivial modes or normal coordinates are printed, along with their vibrational frequencies and symmetry labels. Each mode is represented by the mass-weighted normalized x, y, and z velocity components of each atom when the mode goes through the equilibrium geometry.
FORCE MATRIX IN MILLIDYNES/ANGSTROM O 1 C 2 H 3 H 4 ------------------------------------------------------ O 1 13.833631 C 2 12.333946 15.892804 H 3 1.028611 3.252661 3.992890 H 4 1.028662 3.252790 0.476883 3.992890 HEAT OF FORMATION = -20.697747 KCALS/MOLE ZERO POINT ENERGY 15.272 KCAL/MOL NORMAL COORDINATE ANALYSIS Root No. 1 2 3 4 5 6 1 B2 1 B1 1 A1 2 A1 2 B2 3 A1 1100.7 1155.9 1351.1 1792.9 2615.9 2666.5 1 0.0000 0.0000 0.0285 0.2910 0.0000 -0.0030 2 -0.0486 0.0000 0.0000 0.0000 0.0039 0.0000 3 0.0000 0.0262 0.0000 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.0275 -0.3732 0.0000 -0.0392 5 0.0971 0.0000 0.0000 0.0000 0.0584 0.0000 6 0.0000 -0.1076 0.0000 0.0000 0.0000 0.0000 7 0.3810 0.0000 -0.3900 -0.0859 -0.2766 0.2572 8 -0.1931 0.0000 0.2659 -0.1442 -0.3786 0.4040 9 0.0000 0.4331 0.0000 0.0000 0.0000 0.0000 10 -0.3810 0.0000 -0.3900 -0.0859 0.2766 0.2572 11 -0.1931 0.0000 -0.2659 0.1442 -0.3786 -0.4040 12 0.0000 0.4331 0.0000 0.0000 0.0000 0.0000 MASS-WEIGHTED COORDINATE ANALYSIS Root No. 1 2 3 4 5 6 1 B2 1 B1 1 A1 2 A1 2 B2 3 A1 1100.7 1155.9 1351.1 1792.9 2615.9 2666.5 1 0.0000 0.0000 0.1662 -0.6627 0.0000 0.0171 2 -0.2698 0.0000 0.0000 0.0000 0.0222 0.0000 3 0.0000 0.1443 0.0000 0.0000 0.0000 0.0000 4 0.0000 0.0000 0.1386 0.7365 0.0000 0.1960 5 0.4673 0.0000 0.0000 0.0000 0.2908 0.0000 6 0.0000 -0.5132 0.0000 0.0000 0.0000 0.0000 7 0.5310 0.0000 -0.5704 0.0491 -0.3991 -0.3724 8 -0.2691 0.0000 0.3889 0.0824 -0.5461 -0.5848 9 0.0000 0.5982 0.0000 0.0000 0.0000 0.0000 10 -0.5310 0.0000 -0.5704 0.0491 0.3991 -0.3724 11 -0.2691 0.0000 -0.3889 -0.0824 -0.5461 0.5848 12 0.0000 0.5982 0.0000 0.0000 0.0000 0.0000 DESCRIPTION OF VIBRATIONS
This analysis is the easiest way to describe each vibration. The first number in the energy contribution is the normalized percentage contribution of the diatomic term to the energy of vibration; this adds to 100. The number in parentheses is the un-normalized contribution. The RADIAL term gives the percentage stretch; the rest is bending or tangential motion.
VIBRATION 1 1B2 ATOM PAIR ENERGY CONTRIBUTION RADIAL FREQ. 1100.67 C 2 -- H 3 +43.6% ( 78.5%) 14.3% T-DIPOLE 0.2926 C 2 -- H 4 +43.6% ( 78.5%) 14.3% TRAVEL 0.1293 O 1 -- C 2 +12.7% ( 42.4%) 0.0% RED. MASS 0.9107 VIBRATION 2 1B1 ATOM PAIR ENERGY CONTRIBUTION RADIAL FREQ. 1155.91 C 2 -- H 4 +45.3% ( 62.6%) 0.0% T-DIPOLE 0.1461 C 2 -- H 3 +45.3% ( 62.6%) 0.0% TRAVEL 0.1409 O 1 -- C 2 +9.3% ( 28.4%) 0.0% RED. MASS 1.0983 VIBRATION 3 1A1 ATOM PAIR ENERGY CONTRIBUTION RADIAL FREQ. 1351.10 C 2 -- H 3 +49.6% ( 61.4%) 0.3% T-DIPOLE 0.1257 C 2 -- H 4 +49.6% ( 61.4%) 0.3% TRAVEL 0.1945 O 1 -- C 2 +0.8% ( 7.6%) 100.0% RED. MASS 0.4745 VIBRATION 4 2A1 ATOM PAIR ENERGY CONTRIBUTION RADIAL FREQ. 1792.88 O 1 -- C 2 +60.1% (100.1%) 100.0% T-DIPOLE 2.4960 C 2 -- H 3 +20.0% ( 57.7%) 18.1% TRAVEL 0.0526 C 2 -- H 4 +20.0% ( 57.7%) 18.1% RED. MASS 6.6199 VIBRATION 5 2B2 ATOM PAIR ENERGY CONTRIBUTION RADIAL FREQ. 2615.87 C 2 -- H 3 +49.5% ( 72.4%) 98.7% T-DIPOLE 0.1198 C 2 -- H 4 +49.5% ( 72.4%) 98.7% TRAVEL 0.1315 O 1 -- C 2 +1.0% ( 10.1%) 0.0% RED. MASS 0.5078 VIBRATION 6 3A1 ATOM PAIR ENERGY CONTRIBUTION RADIAL FREQ. 2666.50 C 2 -- H 4 +49.5% ( 69.5%) 95.6% T-DIPOLE 0.0707 C 2 -- H 3 +49.5% ( 69.5%) 95.6% TRAVEL 0.1419 O 1 -- C 2 +1.0% ( 9.9%) 100.0% RED. MASS 0.4834
Force constants, in internal coordinates, are printed, if the data was supplied in internal coordinates. This is useful when individual force constants in a molecule are wanted. Be careful when calculating internal force constants for cyclic systems, e.g., benzene.
FORCE CONSTANT IN INTERNAL COORDINATES (Millidynes/A) ATOM CHEMICAL BOND LENGTH BOND ANGLE TWIST ANGLE NUMBER SYMBOL FORCE CONSTANT FORCE CONSTANT FORCE CONSTANT 1 O 0.000000 0.000000 0.000000 2 C 13.804069 0.000000 0.000000 3 H 3.899044 0.937825 0.000000 4 H 3.899044 0.937825 0.257944 TOTAL CPU TIME: 0.03 SECONDS == MOPAC DONE ==